Targeting PI3K and RAD51 in Barrett's adenocarcinoma: impact on DNA damage checkpoints, expression profile and tumor growth.

نویسندگان

  • Jagannath Pal
  • Mariateresa Fulciniti
  • Puru Nanjappa
  • Leutz Buon
  • Yu-Tzu Tai
  • Pierfrancesco Tassone
  • Nikhil C Munshi
  • Masood A Shammas
چکیده

Phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling in cancer is implicated in various survival pathways including regulation of recombinase (RAD51). In this study, we evaluated PI3K and RAD51 as targets in Barrett's adenocarcinoma (BAC) cells both in vitro and in vivo. BAC cell lines (OE19, OE33, and FLO-1) were cultured in the presence of PI3K inhibitor (wortmannin) and the impact on growth and expression of AKT, phosphorylated-AKT (P-AKT), and RAD51 was determined. Wortmannin induced growth arrest and apoptosis in two BAC cell lines (OE33 and OE19), which had relatively higher expression of AKT. FLO-1 cells, with lower AKT expression, were less sensitive to treatment and investigated further. In FLO-1 cells, wortmannin suppressed ataxia telangiectasia and Rad3-related protein (ATR)-checkpoint kinase 1 (CHK1)-mediated checkpoint and multiple DNA repair genes, whereas RAD51 and CHK2 were not affected. Western blotting confirmed that RAD51 was suppressed by wortmannin in OE33 and OE19 cells, but not in FLO-1 cells. Suppression of RAD51 in FLO-1 cells down-regulated the expression of CHK2 and CHK1, and reduced the proliferative potential. Finally, the suppression of RAD51 in FLO-1 cells, significantly increased the anticancer activity of wortmannin in these cells, both in vitro and in vivo. We show that PI3K signaling and hsRAD51, through distinct roles in DNA damage response and repair pathways, provide survival advantage to BAC cells. In cells with inherent low expression of AKT, RAD51 is unaffected by PI3K suppression and provides an additional survival pathway. Simultaneous suppression of PI3K and RAD51, especially in cells with lower AKT expression, can significantly reduce their proliferative potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting Polo-like kinase 1 in SMARCB1 deleted atypical teratoid rhabdoid tumor

Atypical teratoid rhabdoid tumor (ATRT) is an aggressive and malignant pediatric brain tumor. Polo-like kinase 1 (PLK1) is highly expressed in many cancers and essential for mitosis. Overexpression of PLK1 promotes chromosome instability and aneuploidy by overriding the G2-M DNA damage and spindle checkpoints. Recent studies suggest that targeting PLK1 by small molecule inhibitors is a promisin...

متن کامل

Impact of RAD51C-mediated Homologous Recombination on Genomic Integrity in Barrett’s Adenocarcinoma Cells

BACKGROUND In normal cells, RAD51-mediated homologous recombination (HR) is a precise DNA repair mechanism which plays a key role in the maintenance of genomic integrity and stability. However, elevated (dysregulated) RAD51 is implicated in genomic instability and is a potential target for treatment of certain cancers, including Barrett's adenocarcinoma (BAC). In this study, we investigated gen...

متن کامل

Rad51 Expression in Nasopharyngeal Carcinoma and Its Association with Tumor Reduction: A Preliminary Study in Indonesia

Background: Overexpression of Rad51 protein in many tumor cells has been proven to increase radioresistance and can be related to the resistance of chemosensitivity of tumor cells. This preliminary study was conducted to determine the relationship between the Rad51 expression level in nasopharyngeal carcinoma and the response of the treatment based on the measurement o...

متن کامل

microRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF

Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...

متن کامل

Targeting FANCD2 for therapy sensitization

The Fanconi Anemia (FA) signaling pathway is essential for the maintenance of genome integrity and cells to survive DNA interstrand crosslink (ICL) by coordinating DNA damage repair through translesion DNA synthesis (TLS), nucleotide excision repair (NER) and homologous recombination (HR). Besides ICL, the FA signaling pathway is activated by different kinds of genotoxins and plays an important...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer genomics & proteomics

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2012